Cross Ref DOI: 10.30574/gscaet
Journal homepage: https://gsconlinepress.com/journals/gscaet/

On computing transitive closures in MatBase

Christian Mancas *
Mathematics and Computer Science Department, Ovidius University, Constanta, Romania.

GSC Advanced Engineering and Technology, 2022, 04(01), 039-058

Publication history: Received on 07 July 2022; revised on 14 August 2022; accepted on 16 August 2022
Article DOI: https://doi.org/10.30574/gscaet.2022.4.1.0050

Abstract

This paper presents how transitive closures and their instantiations for all possible types of db interesting functions and function products are computed by the MatBase Datalog \urcorner subsystem. Moreover, it is proved that the corresponding algorithms are linear, solid, complete, and optimal.

Keywords: Self-function product; Transitive closure; Datalog; Fixpoint semantics; (Elementary) Mathematical Data Model; MatBase

1. Introduction

In everyday life we often talk about parent-child relationships: binary relations on a set of people, dead or alive. For example, in a REIGNS database, we might have a RULERS table having (among other columns as well) a surrogate auto number primary key x, a text Name one, and two foreign keys (both referencing x) Father and Mother (for storing corresponding parents, whenever known or interesting enough) as in Fig. 1 (also presenting a partial instance from Romania's history between the XIIIth and XVth).

We are often also interested in ancestor-descendant relations. Although the latter relation can be obtained from the former (hence, it is redundant in that sense), we do use ancestor-descendant relations, which give us necessary information more directly. For example, some years ago, HRH Prince Charles of Wales declared that he is a descendant of Vlad Țepeş ("the Impaler") "Dracula" (apparently, according to [CBS News Portal, https://www.cbsnews.com/news/vlad-the-impaler-how-is-prince-charles-queen-elizabeth-related-to-him/, Last accessed on 08/19/2022], through his stepbrother Vlad Călugărul ("the Monk"), who was one of the ancestors of Queen Elizabeth II, HRH's mother); does this mean, for example, that he is also a descendant of the founders of the two Romanian medieval states, Basarab I for Walachia and Bogdan I for Moldavia?

This ancestor-descendant relation relates two people if there is a sequence of parent-child relations from one to the other; obviously, it includes the parent-child relation as a subset. The ancestor-descendant relation is an example of the closure of a relation, in particular the transitive closure of the parent-child relation.

1.1. Transitive closures

Recall that a relation R^{\prime} is the transitive closure of a relation R if and only if
(1) R^{\prime} is transitive,
(2) $R \subseteq R^{\prime}$, and

[^0](3) For any relation $R^{\prime \prime}$, if $R \subseteq R^{\prime \prime}$ and $R^{\prime \prime}$ is transitive, then $R^{\prime} \subseteq R^{\prime \prime}$, that is R^{\prime} is the smallest relation that satisfies (1) and (2).

RULERS			
\underline{x}	Name	Father	Mother
36	Vlad Ţepeș ("Dracula")	35	493
33	Vlad Călugărul	35	485
23	Radu cel Frumos	35	15
35	Vlad Dracul	19	255
15	Vasilisa Mușat	42	
19	Mircea cel Bătrân	26	248
26	Radu I	22	58
22	Nicolae Alexandru	5	243
5	Basarab I	241	240
241	Thocomerius		
240	Ana	239	
239	Bărbat		
42	Alexandru cel Bun	71	44
71	Roman I	75	57
75	Ştefan I Mușat	218	73
218	Ştefan	46	
46	Bogdan I		

Figure 1 Walachia and Moldavia first rulers and some of their parents
Note that the digraph of the transitive closure of a relation is obtained from the digraph of the relation by adding for each directed path the edge that shunts the path, whenever one is not already there.

Obviously, both above self-mappings Father : RULERS \rightarrow RULERS and Mother : RULERS \rightarrow RULERS are parent-child relations (in fact, their codomains are merged with the distinguished set NULLS, as some parents are not known).

Among others, there is a well-known Roy-Floyd-Warshall algorithm [1] for computing transitive closures; based on the relation's adjacency matrix, this elegant algorithm is however practical only for small amounts of data, not for db size table instances (as their closures generally cannot fit into memory, even if the base corresponding relations can: for instance, the actual instance of the RULERS table only for Dacia, all 3 former Romanian kingdoms, and Romania has 650 lines; its transitive closure for both Father and Mother relationships has 6377 lines and only few daughter data has been entered yet).

As known since decades [2], neither relational algebra (RA), nor relational calculus can compute transitive closures; although lately most of the commercially available RDBMSs extended their SQLs to compute it, however, the appeal to Datalog \neg (and other similar paradigms) for solving this problem is still strong, as they are more powerful and elegant.

Let us denote by $G_{f}=\{<x, f(x)>\mid x \in R\}$ the graph of any self-function $f: R \rightarrow R$; we denote (by notational abuse) its transitive closure $G_{f}{ }^{*}$ with f^{*}. For example, to compute Father*, the transitive closure of Father, the following Datalog program [3] can be used:

$$
\begin{gathered}
\text { Father }^{*}(x, y) \leftarrow \operatorname{RULERS}(x, y) \\
\text { Father }^{*}(x, y) \leftarrow \text { Father }^{*}(x, z), \operatorname{RULERS}(z, y)
\end{gathered}
$$

Figure 2 Datalog program for computing Father's transitive closure
Similarly, to compute Mother*, the transitive closure of Mother, the following Datalog program can be used:

$$
\begin{gathered}
\operatorname{Mother}^{*}(x, y) \leftarrow \operatorname{RULERS}(x, y) \\
\operatorname{Mother}^{*}(x, y) \leftarrow \operatorname{Mother}^{*}(x, z), \operatorname{RULERS}(z, y)
\end{gathered}
$$

Figure 3 Datalog program for computing Mother's transitive closure
Note that, in both of them, the first rule is the equivalent of (2) above (i.e. the transitive closure of a relation always includes that relation), whereas the second is the equivalent of (3) above (i.e. if somebody has x as an ancestor, then x^{\prime} s father/mother is also an ancestor of that somebody).

Computing the transitive closure of only one element (e.g. "Dracula", i.e. 36 in Figure 1 above) can be done through instantiating the corresponding program for it: Figure 4 shows an instantiation of the program in Figure 2, whereas Figure 5 shows the same one for the Datalog program in Figure 3.

$$
\begin{aligned}
& \text { Father }^{*}(36, y) \leftarrow \text { RULERS }(36, y) \\
& \text { Father }^{*}(36, y) \leftarrow \text { Father }^{*}(36, z), \operatorname{RULERS}(z, y)
\end{aligned}
$$

Figure 4 Datalog program instantiation for computing Father's transitive closure of ruler 36

$$
\begin{gathered}
\text { Mother }^{*}(36, y) \leftarrow \operatorname{RULERS}(36, y) \\
\text { Mother }^{*}(36, y) \leftarrow \text { Mother }^{*}(36, z), \operatorname{RULERS}(z, y)
\end{gathered}
$$

Figure 5 Datalog program instantiation for computing Mother's transitive closure of ruler 36
Unfortunately, neither of these two programs, nor their instantiations can answer, for example, the question on whether HRH Prince Charles of Wales' ancestors also Cuman blood have, as Romanian dynasties too have from time to time survived only through females and, of course, they interrelated to each other through marriages (for the fact that the founder of the Wallachian Kingdom was a Cuman see, for example, [4]). For example, in Figure 1, "Dracula"'s stepmother, Vasilisa Muşat, was one of the links between some of his brothers and sisters Walachian (from their father) and Moldavian descendance.

Obviously, what should be computed for correctly answering such queries is the transitive closure of the function product (Father • Mother)* or, at least, the transitive closure, according to this product, of the corresponding person (in this case, "Dracula"), i.e. the corresponding instantiation of the transitive closure of the function product (Father • Mother)*.

1.2. Related work

Lot of work was published on computing transitive closures (e.g. [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), but none, to our knowledge, for function products.

Datalog engines are behind specialized db systems such as LDL [15], MatBase [3, 16], and Intellidimension's database for the semantic web [Intellidimension Portal, http://www.intellidimension.com/, Last accessed on 08/19/2022]. Moreover, some widely used database systems include ideas and algorithms developed for Datalog. For example, the SQL : 1999 standard includes recursive queries, and the Magic Sets algorithm (initially developed for the faster evaluation of Datalog queries) is implemented in IBM's DB2.

1.3. MatBase

MatBase [3, 16] is a prototype intelligent db and knowledge base (kb) management system based on both the (Elementary) Mathematical Data Model (EMDM) [3, 17], Entity-Relationship Data Model (E-RDM) [18, 19], Relational Data Model (RDM) [19, 20, 21], and Datalog $\neg[3,20,22]$, developed by the author in two versions: one in MS Access (mainly for use in university labs) and (a commercial) one in MS net C\# and SQL Server.

1.4. Paper outline

Next Section presents first how MatBase computes transitive closures of binary relations, including the syntax-directed algorithms for translating Datalog programs to Relational Algebra (RA) equation systems and for computing the least fixpoint of recursive RA equations. Then, it continues with the algorithms for computing transitive closures for function products (first, of arity 2, then, of any arity). Section 3 deals with MatBase's algorithms for computing transitive closures of function products' instance elements. The paper ends with conclusion and references.

2. Computing function product closures

Through its (E)MDM interface, MatBase users can define, among many others, any number of function products; obviously, all members of such a product should have a same domain. If, moreover, all their codomains are the same as (or included into) their common domain, then, like for any other dyadic relation, users can also ask for computation of their closures (be them reflexive, symmetric, transitive, or any combinations between them).

2.1. Computing transitive closures of a binary relation

Although there are other faster methods for computing transitive closures, MatBase is using the semi-naïve implementation of the least fixpoint semantics for RA equations [3,20,22], which is fast enough (for instance, computing the 6377 lines of (Father • Mother)* above only takes under 1 second on a current "standard" notebook).

This approach is first translating each inference rule of a Datalog program into a $R A$ disequation (i.e inclusion relationship) by using a syntax-directed algorithm; then, by applying the closed world assumption (i.e. we are only interested in those ground facts that are a consequence of the corresponding Datalog program), all such disequations having same head (i.e. left-hand side intentional predicate) are collapsed into a single $R A$ equation, having same head and as body (i.e. right-hand side expression) the union of all involved disequations' bodies, thus obtaining a corresponding RA equation system; such systems are then solved first by using substitution (just like for numbers algebra equation systems) and then, as equations may be recursive (i.e. containing, for example, the head intensional predicate also in the body), each such equation is solved by using the least fixpoint computational semantics (i.e. computing the smallest relation instance that satisfies the equation).

2.1.1. Syntax-directed translation algorithm from Datalog to $R A$

Without entering into details, for example, if a query p is defined on attribute A and a relation r on attributes B and C, using the natural correspondence between positional and non-positional notations, a Datalog inference rule of the form $p(x) \leftarrow p(y), r(x, y)$ is translated by this algorithm into the disequation $p \supseteq \rho_{A \leftarrow B}\left(\pi_{B}\left(p \bowtie_{A}=c r\right)\right)$, where ρ, π and \bowtie are the relational algebra (RA) renaming, projection, and join operators, respectively.

Generally, given a rule $p\left(x_{1}, \ldots, x_{n}\right) \leftarrow q_{1}\left(y_{1}, \ldots, y_{k 1}\right), \ldots, q_{m}\left(y_{1}, \ldots, y_{k m}\right)$, this algorithm translates it into the disequation $P \supseteq$ $E\left(Q_{1}, \ldots, Q_{m}\right)$, where P, Q_{1}, \ldots, Q_{m} are the query and fundamental relations that correspond to predicates p, q_{1}, \ldots, q_{m}, respectively. By collapsing all such i disequations having P as left-hand side, a RA equation of the type $P=E_{1}\left(Q_{1}, \ldots, Q_{m 1}\right)$ $\cup \ldots \cup E_{i}\left(Q_{1}, \ldots, Q_{m i}\right)$ is obtained.

For instance, the two rules of the program in Figure 2 above are translated into the following two RA disequations:

> Father ${ }^{*} \supseteq \rho_{\text {Descendant, Ancestor } \leftarrow x, \text { Father }\left(\pi_{\mathrm{x}}, \text { Father }(\text { RULERS })\right)}$
> Father ${ }^{*} \supseteq \rho_{\text {Ancestor } \leftarrow \text { Father }\left(\pi_{\text {Descendant, Father }}(\text { Father }\right.} \bowtie_{\text {Ancestor }=x} \pi_{\mathrm{x}}$, Father $($ RULERS $\left.\left.)\right)\right)$

Figure 6 RA disequations corresponding to the Datalog program in Figure 2
These disequations are then collapsed into the following RA recursive equation:

```
    Father*}=\mp@subsup{\rho}{\mathrm{ Descendant,Ancestor }\leftarrowx,Father }{}(\mp@subsup{\pi}{\textrm{x},\mathrm{ Father }}{}(\mathrm{ RULERS ))}
\rho
```

Figure 7 Recursive RA equation corresponding to the disequations in Figure 6

2.1.2. Computing the least fixpoint of $R A$ recursive equations

It was shown [20] that RA equations obtained as in 2.1.1 from Datalog programs always have a fixpoint (trivially, as db instances are finite). This fixpoint is obtained as follows: from every RA recursive equation, a family of recurrent ones is obtained, where, by definition, P_{0} is the empty set, for any query P, for every natural $j \geq 0$; by definition, the least fixpoint of P is the first P_{j} in the sequence P_{0}, P_{1}, \ldots such that $P_{j}=P_{j+1}$.

For instance, the RA equation in Figure 7 is transformed into the family of recurrent ones presented in Figure 8:

$$
\begin{gathered}
\text { Father }{ }_{j+1}=\rho_{\text {Descendant, Ancestor } \leftarrow x, \text { Father }}\left(\pi_{\mathrm{x}, \text { Father }}(\text { RULERS })\right) \cup \\
\rho_{\text {Ancestor } \leftarrow \text { Father }}\left(\pi_{\text {Descendant, Father }}\left(\text { Father }_{j}{ }_{j} \bowtie_{\text {Ancestor }=x} \pi_{\mathrm{x}, \text { Father }}(\text { RULERS })\right)\right)
\end{gathered}
$$

Figure 8 Recurrent RA equations corresponding to the equation in Figure 7
Obviously, Father ${ }_{1}=\rho_{\text {Descendant, Ancestor } \leftarrow x, \text { Father }(~}^{\left.\pi_{x}, ~ F a t h e r ~(R U L E R S) ~\right), ~ a s ~ j o i n i n g ~ a n y t h i n g ~ w i t h ~ t h e ~ e m p t y ~ s e t ~ a l w a y s ~ y i e l d s ~}$ the empty set; so, if RULERS instance were the one in Figure 1, Father* ${ }_{1}$ instance would also have 17 lines, the ones in Figure 9.

Father* ${ }_{1}$					
Descendant	Ancestor	19	26	239	
36	35	26	22	42	71
33	35	22	5	71	75
23	35	5	241	75	218
35	19	241		218	46
15	42	240	239	46	

Figure 9 First approximation of Father*'s fixpoint for RULERS instance in Figure 1
Then, Father ${ }_{2}=\rho_{\text {Descendant, Ancestor }} \leftarrow x$, Father $\left(\pi_{x}\right.$, Father $($ RULERS $\left.)\right) \cup \rho_{\text {Ancestor }} \leftarrow \operatorname{Father}\left(\pi_{\text {Descendant, Father }}\left(\right.\right.$ Father ${ }_{1} \bowtie_{\text {Ancestor }=x} \pi_{x}$, Father(RULERS)), so that Father ${ }_{2}$ contains 14 more lines (the bottom ones in Figure 10).

Note that the first operand of this union asks for duplication of all existing lines, which, obviously, must be rejected.
Also note that, in fact, if user does not ask explicitly the contrary, MatBase eliminates null ancestors (which, for the dynasties founders may be interesting, but for all others are not: as such, in the above instance, tuples $<5,>,<240,>$, and <218, $>$ are not generated, so only 11 new lines are added in this step), generating in fact as second rule (in Datalog \rightarrow) of the program from Figure 2:

$$
\text { Father }^{*}(x, y) \leftarrow \text { Father }^{*}(x, z), \operatorname{RULERS}(z, y), \neg \operatorname{IsNull}(y)
$$

instead, which yields the following disequation (see Figure 6):

$$
\text { Father* } \supseteq \rho_{\text {Ancestor }} \leftarrow \operatorname{Father}\left(\pi_{\text {Descendant, Father }}\left(\text { Father } * \bowtie_{\text {Ancestor }=x} \pi_{x}, \text { Father }\left(\sigma_{N o t ~ I s N u l l(F a t h e r)}(R U L E R S)\right)\right)\right) \text {, }
$$

where σ is the selection RA operator.
Figure 11 shows Father* ${ }_{3}$ instance, obtained this time (as always from now on) according to this enhanced second rule.

Father* ${ }_{2}$					
Descendant	Ancestor	240	239	15	71
36	35	239		19	22
33	35	42	71	26	5
23	35	71	75	22	241
35	19	75	218	5	
15	42	218	46	240	
19	26	46		42	75
26	22	36	19	71	218
22	5	33	19	75	46
5	241	23	19	218	
241		35	26		

Figure 10 Second approximation of Father*'s fixpoint for RULERS instance in Figure 1

Father^{3}					
Descendant	Ancestor	42	71	42	75
36	35	71	75	71	218
33	35	75	218	75	46
23	35	218	46	36	26
35	19	46		33	26
15	42	36	19	23	26
19	26	33	19	35	22
26	22	23	19	15	75
22	5	35	26	19	5
5	241	15	71	26	241
241		19	22	42	218
240	239	26	5	71	46
239		22	241		

Figure 11 Third approximation of Father*'s fixpoint for RULERS instance in Figure 1, excluding nulls (except for dynasties' founders)

It should be noted that the 9 new rows that were added in this step (at the bottom of the table) were generated only from the 11 ones obtained in the previous one; the other lines (i.e. those originally coming from RULERS in the first step) re-generated these existing 11 ones and have to be rejected as duplicates. Moreover, just as in the previous step, attempts to re-duplicate the first 17 lines are again asked by the first operand of the union operator, but they must be rejected once more.

In fact, based on these facts, MatBase is not even generating duplicates ever, as, in any step, it joins RULERS with only those lines of Father* that were added in the previous step (by adding a column Level to Father* for also storing for each pair <descendant, ancestor> its depth level, which is also an interesting information per se).

The third iteration adds 7 new lines, the fourth one another 5 , the fifth - other 3, and, finally, the sixths none: the process stops as Father* ${ }_{5}$ has just been identified as being the least fixpoint (hence, the solution) of Father* (see its instance in Figure 12). From these 42 lines it is immediately computable that Vlad Călugărul ("the Monk", id 33) is a descendant of Basarab I (id 5), the founder of Wallachia, but that he is not descending on his father side from Bogdan I (id 46), the founder of Moldavia (as no pair $<33,46>$ exists in this transitive closure).

Father $*=$ Father $^{*}{ }_{5}\left(=\right.$ Father $^{*}{ }_{6}=$ Father $\left.^{*}{ }_{7}=\ldots\right)$					
Descendant	Ancestor	36	19	42	218
36	35	33	35	71	46
33	35	23	19	36	22
23	35	35	26	33	22
35	19	15	71	23	22
15	42	19	22	35	5
19	26	26	5	15	218
26	22	22	241	19	241
22	5	42	75	42	46
5	241	71	218	36	5
241		75	46	33	5
240	239	36	26	23	5
239		33	26	35	241
42	71	23	26	15	46
71	75	35	22	36	241
75	218	15	75	33	241
218	46	19	5	23	241
46		26	241		

Figure 12 Father* fixpoint for RULERS instance in Figure 1
Moreover, as the latest allegations of historians (see, for instance, [4]) that Basarab I's father, Thocomerius (id 241), was a Cuman are most probably true, and as Vlad Călugărul ("the Monk") is also a descendant of Thocomerius (see the tuple $<33,241>$ from Father* in Figure 12), then in HRH Charles of Wales blood there are also Cuman reminiscences.

Generally, MatBase algorithm (presented here in a pseudo-code embedding SQL [3, 19] -invoked through function execute-, where // introduces comments, $\&$ is the string concatenation operator and domain, codomain, error, existsTable, and iif are librarian functions performing obvious tasks: for instance, the result of iif(cond, T, F) is T when cond is true and F otherwise) for computing the transitive closure of any relation is the one presented in Figure 13 (please also note that in MatBase all tables are stored in a very restrictive variant of the DKNF [19, 20], with every table having an integer surrogate primary key -which, obviously, stands for the x of all other columns of the table when regarded as functions defined on their table instance- and any foreign key referencing only the corresponding primary key; this is why both a_{1} and a_{2} are always integers; obviously, for "deciphering" the computed transitive closure instance, two inner joins of this result with two instances of the corresponding "deciphering" table on these columns with the corresponding surrogate key are all that's needed; for instance:

SELECT RULERS.Name AS Descendant, FATHERS.Name AS Ancestor FROM (RULERS INNER JOIN Father* ON RULERS.x = Father*.Descendant) INNER JOIN RULERS AS FATHERS ON Father*.Ancestor = FATHERS.x;

Obviously, the result shown in Figure 12 is obtainable by the following call to this method: computeTransClosure (x, Father, Father*, Descendant, Ancestor,). Figure 14 presents the result of a call computeTransClosure (x, Mother, Mother*, Descendant, Ancestor, 0), which, obviously, is Mother* (without any null ancestors). It is obvious that Father* \cup Mother* does not contain the pair <23, 46> either, although, by his mother, Radu cel Frumos (id 23), one of "Dracula"'s stepbrothers, also descends from Bogdan I (id 46), the Moldavia's founder.

Naturally, this method can be used for computing the transitive closure of any dyadic relation, not necessarily functional; for example, in a FOOTBALL_CHAMPIONSHIP db, we might want to compute the transitive closure of a relation MATCHES for its two columns Host and Visitor (both referencing the surrogate primary key x of a table FOOTBALL_CLUBS); trivially (note that both being in fact canonical projections of MATCHES, neither Host nor Visitor should accept nulls), this can be computed by the call: computeTransClosure(Host, Visitor, MATCHES*, Host, Visitor, 0).

Algorithm computeTransClosure
Input: c_{1}, c_{2} - the two columns of a table R storing the desired relation graph;
TransClosure, a_{1}, a_{2} - the names of the desired table (distinct in the db) and its two columns for storing the result;
nulls? - 0 , if no null values are desired in c_{2}, or
1, if no null values are desired in c_{2} except for those in R (which is the default value), or
2 , if all null values are desired in c_{2};
Output: table TransClosure instance, storing the corresponding transitive closure;
Strategy:
if domain $\left(c_{1}\right) \neq \operatorname{domain}\left(c_{2}\right)$ or codomain $\left(c_{1}\right) \neq$ INT or $\operatorname{codomain}\left(c_{2}\right) \neq$ INT then
return error ("impossible to compute transitive closure: c_{1} and c_{2} are either not columns of a same table or have incompatible data types!");
if existsTable(TransClosure) then execute("DELETE FROM " \& TransClosure)
else execute("CREATE TABLE " \& TransClosure \& "([Level] INT, [" \& $a_{1} \&$ "] INT, [" \& a a_{2} \& "] INT) ;");
oldcard $=0 ; \quad / /$ TransClosure is empty
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& $c_{1} \&$ "], [" \& $c_{2} \&$ "] FROM " \& R \& iif(nulls? = 0, " WHERE [" \& c_{2} \& "] NOT IS NULL", "")); // initialize result with <"son", "father"> pairs
level $=2$; // next step will add second level "ancestors"
card = execute("SELECT Count (*) FROM " \& TransClosure);
while card \neq oldcard
oldcard = card; // prevent infinite looping
execute("INSERT INTO " \& TransClosure \& " SELECT " \& level \& " AS [Level], " \& TransClosure \& ".[" \& a a \& "], " \& R \& ".[" \& c_{2} \& "] FROM " \& R \& " INNER JOIN " \& TransClosure \& " ON "\& TransClosure \& ".[" \& $\left.a_{2} \& "\right]=" \& R \& " .[" \&$

card = execute("SELECT Count (*) FROM " \& TransClosure);
level $=$ level +1 ; // prepare next level "ancestors"
end while;
End Algorithm computeTransClosure;

Figure 13 MatBase algorithm for computing dyadic relations' transitive closures

Mother* $=$ Mother ${ }_{1}\left(=\right.$ Mother ${ }_{2}=$ Mother $\left.^{*}{ }_{3}=\ldots\right)$			
Descendant	Ancestor	26	58
36	493	22	243
33	485	5	240
23	15	42	44
35	255	71	57
19	248	75	73

Figure 14 Mother*'s fixpoint for RULERS instance in Figure 1 (without nulls)
Moreover, obviously, this method can compute the transitive closure of any function product $f \bullet g: R \rightarrow$ INT \times INT; for example, in a RAILROADS db, the call computeTransClosure(DepartureStation, DestinationStation, CONNECTIONS*, Departure, Destination, 0) would compute the transitive closure of the product of the columns DepartureStation and DestinationStation (both of them referencing the surrogate primary key x of a table STATIONS and not accepting nulls) of a table LINES.

Theorem 1: Algorithm computeTransClosure from Figure 13 has the following four properties:
(i) it is linear in the longest path in the digraph of the input relation
(ii) it is sound (i.e. it is not generating anything else but elements of the transitive closure of the input relation)
(iii) it is complete (i.e. it generates all elements of the transitive closure of the input relation)
(iv) it is optimal (i.e. it computes the transitive closure of the input relation in the least number of steps possible)

Proof:

(i) Trivially, as it has only one finite loop (hence, it never loops infinitely) depending on the longest path in the digraph of the input relation (trivially, as db instances are finite, any such length is finite).
(ii) Obviously, the initial step only adds the input relation; then, in each iteration of the loop, for any pair $<x, y>$ in the current result approximation and $\langle y, z\rangle$ in the input relation, it is only added the pair $\langle x, z\rangle$, according to the transitivity rule. Moreover, trivially, attempts to call the corresponding method with wrong input parameters (i.e. columns not of the same table or not referencing both a same table) are rejected.
(iii) Obviously, the loop is executed up until no further transitively computable pairs may be added to the result: the first statement of the loop makes sure that variable oldcard is storing the current result cardinal, the last but one one is updating variable card's value to the cardinal of the result after adding current iteration elements, and the while statement condition ensures that the process repeats only as long as these two values are not equal (i.e. as long as the previous iteration was adding at least one new element to the result).
(iv) Obviously, as soon as the previous loop iteration did not add any new elements to the result, the process stops (i.e. the algorithm only computes the first two fixpoints, which is the minimum possible in order to discover the least fixpoint). Moreover, the algorithm never generates duplicates on a same level (as it joins to the input relation only the current result elements that were added in the previous iteration), which is minimizing disk accesses for both reading and writing operations. ...q.e.d.

2.2. Computing transitive closures of function products

Let $f: R \rightarrow R$ be any self-function defined on and taking values into some set R. By definition, for any (generally other, but not necessarily distinct) $g: \mathrm{R} \rightarrow R$, we define $(f \bullet g)^{*}=\left(G_{f} \cup G_{g}\right)^{*}$.

Proposition 1: $f^{*} \cup g^{*} \subseteq(f \bullet g)^{*}$
Proof: let us assume that there is a pair $\left\langle a, b>\in f^{*} \cup g^{*}\right.$, which does not belong to $(f \bullet g)^{*}$; then, it either belongs to f^{*} or/and to g^{*}; if it belongs to f^{*} (i.e. $G_{f}{ }^{*}$), then it should belong to $(f \bullet g)^{*}$ too, even if G_{g} were the empty set; if it belongs to g^{*} (i.e. $G_{g}{ }^{*}$), then it should belong to $(f \bullet g)^{*}$ too, even if G_{f} were the empty set; consequently, the assumption that it does not belong to $(f \bullet g)^{*}$ too was absurd.....q.e.d.

As we should expect, generally, $(f \bullet g)^{*} \nsubseteq f^{*} \cup g^{*}$, as we will see, for instance, with the <23, 46> element, which belongs to (Father •Mother)* (Figure 18 below), although it does not belong to Father* \cup Mother* (see Figures 12 and 14).

Proposition 2: $(f \bullet g)^{*} \not \subset f^{*} \cup g^{*}$
Proof: see the <23, 46> counterexample in Figure 18 (as compared to Figures 12 and 14); alternative proof (see Figure 18): $\operatorname{card}\left(\left(\text { Father } \bullet \text { Mother }^{*}\right)^{*}\right)=72>53=42+11=\operatorname{card}\left(\right.$ Father* $\left.^{*}\right)($ see Figure 12) $+\operatorname{card}($ Mother*) (see Figure 14) q.e.d.

2.2.1. Computing transitive closures for self-function products of arity 2

MatBase is computing self-function products' transitive closures with this definition, starting with the generation of the following Datalog program type (with slight variations on nulls, depending on the user's request and preserving notations used in Figure 13 and the ones above):

$$
\begin{gathered}
\text { TransClosure }\left(a_{1}, a_{2}\right) \leftarrow R\left(c_{1}, f\right)[, \neg \operatorname{IsNull}(f)] \\
\operatorname{TransClosure}\left(a_{1}, a_{2}\right) \leftarrow R\left(c_{1}, g\right)[, \neg \operatorname{IsNull}(g)] \\
\text { TransClosure }\left(a_{1}, a_{2}\right) \leftarrow \operatorname{TransClosure}\left(a_{1}, x\right), R(x, f)[, \neg \operatorname{IsNull}(f)] \\
\text { TransClosure }\left(a_{1}, a_{2}\right) \leftarrow \operatorname{TransClosure}\left(a_{1}, x\right), R(x, g)[, \neg \operatorname{IsNull}(g)]
\end{gathered}
$$

Figure 15 MatBase Datalog \neg generic program for computing $(f \bullet g)^{*}$
This yields (when all null values are desired) the following RA equation:

TransClosure $=$	$\rho_{a 1, a 2 \leftarrow c 1, f}\left(\pi_{c 1, f}(R) \cup \rho_{a 1, a 2 \leftarrow c 1, g}\left(\pi_{c 1, g}(R) \cup\right.\right.$
	$\rho_{a 2 \leftarrow f}\left(\pi_{a 1, f}\left(\right.\right.$ TransClosure $\left.\left.\bowtie_{a 2=c 1} \pi_{c 1, f}(R)\right)\right) \cup$
	$\rho_{a 2 \leftarrow g}\left(\pi_{a 1, g}\left(\right.\right.$ TransClosure $\left.\left.\bowtie_{a 2=c 1} \pi_{c 1, g}(R)\right)\right)$

Figure 16 RA equation corresponding to the Datalog \neg generic program in Figure 15 (all nulls included)
Its evaluation can be done by a method computeBinaryAutoProductTransClosure, whose algorithm is presented in Figure 17 (which is, except for the duplicate deletion step, an obvious extension of computeTransClosure).

For example, the following call of this method computes the transitive closure (Father •Mother)* into table RulersTransClosure, with nulls only for those initially existing in Father: computeBinaryAutoProductTransClosure(x, Father, Mother, RulersTransClosure, Descendant, Ascendant,, 0); the corresponding computed instance is showed in Figure 18.

It is obvious that (Father • Mother)* contains the pair $<23,46>$ (see its last instance line), so Radu cel Frumos (id 23) has also been discovered as descending too from Bogdan I (id 46), the Moldavia's founder, but does not contain a pair $<36,46>$, i.e. Vlad Țepeș (the Impaler) "Dracula" (id 36) was not descending from Bogdan I; this, finally, is proving not only that the answer to the question whether HRH Prince Charles of Wales also descends from the founders of both Wallachia and Moldavia is negative (i.e. partially true -for Wallachia- but partially false -for Moldavia), but, much more important, that, indeed, $(f \bullet g)^{*} \not \subset f^{*} \cup g^{*}$ (i.e. $(f \bullet g)^{*}$ is richer than $f^{*} \cup g^{*}$).

In fact, MatBase actual algorithm for computing transitive closures is more powerful and complicated: as its metacatalogue also stores (fundamental) functions, (computed) function products, and their members, only the ids of the desired function product is needed instead of the first three parameters of the computeBinaryAutoProductTransClosure method from Figure 17. However, the major advantage of this approach is the fact that MatBase can compute transitive closures for relations and function products of any arity (not only for binary ones).

Algorithm computeBinaryAutoProductTransClosure

Input: x, f, g - columns of a table R storing the desired self-function product graph;
TransClosure, a_{1}, a_{2} - the names of the desired table (distinct in the db) and its two columns for storing the result;
nulls? - a pair of the type <0 or 1 or 2,0 or 1 or $2>$, where the first element is describing user request for nulls processing for f, while the second one is for g (using same code conventions as in Figure 13);

Output: table TransClosure instance, storing the transitive closure of $f \bullet g$;
Strategy: if domain $(x) \neq \operatorname{domain}(f)$ or domain $(x) \neq \operatorname{domain}(g)$ or codomain $(f) \neq \operatorname{codomain}(g)$ then
return error ("impossible to compute transitive closure: either x, f, or g are not columns of a same table or f and g are not referencing a same table!");
if existsTable(TransClosure) then execute("DELETE FROM " \& TransClosure)
else execute("CREATE TABLE " \& TransClosure \& "([Level] INT, [" \& $a_{1} \&{ }^{\text {\& }}$] INT, [" \& $a_{2} \&$ "] INT) ;");
oldcard $=0 ; \quad / /$ TransClosure is empty
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& x \& "], [" \& f \& "] FROM " \& R \& iif(nulls?[1] = 0, " WHERE [" \& $f \&$ "] NOT IS NULL", "")); // initialize result with <"son", "father"> pairs
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& x \& "], [" \& g \& "] FROM " \& R \& iif(nulls?[2] = 0, " WHERE [" \& g \& "] NOT IS NULL", "")); // initialize result with <"son", "mother"> pairs
level $=2$; // next step will add second level "ancestors"
card = execute("SELECT Count (*) FROM " \& TransClosure);
while card $=$ oldcard
oldcard = card; // prevent infinite looping
execute("INSERT INTO " \& TransClosure \& " SELECT " \& level \& " AS [Level], " \& TransClosure \& ".[" \& a \& "], " \& R \& ".[" \& f\& "] FROM " \& R \& " INNER JOIN " \& TransClosure \& " ON "\& TransClosure \& ".[" \& a a_{2} \& "]=" \& R \& ".[" \& x \&"] WHERE [Level] =" \& level - 1 \& iff (nulls?[1] =1, " AND " \& R \& ".[" \& f \& "] NOT IS NULL", ""));
execute("INSERT INTO " \& TransClosure \& " SELECT " \& level \& " AS [Level], " \& TransClosure \& ".[" \& a \& "], " \& R \& ".[" \& g \& "] FROM " \& R \& " INNER JOIN " \& TransClosure \& " ON "\& TransClosure \& ".[" \& a a_{2} "]]=" \& R \& ".[" \& x \& "] WHERE [Level] =" \& level - 1 \& iff (nulls?[2] =1, " AND " \& R \& ".[" \& g \& "] NOT IS NULL", ""));
execute("DELETE FROM " \& TransClosure \& " WHERE x IN (SELECT y FROM (SELECT Min(Descendant), Min(Ancestor), Count(Descendant) AS Number Of Dups, Max(x) AS y FROM " \& TransClosure \& " GROUP BY Descendant, Ancestor HAVING Count(Descendant)>1);")
card = execute("SELECT Count (*) FROM " \& TransClosure); level = level +1 ; // prepare next level "ancestors" end while;

End Algorithm computeBinaryAutoProductTransClosure;

Figure 17 MatBase algorithm for computing binary self-function products transitive closures

RulersTransClosure $=(\text { Father } \bullet \text { Mother })^{*}=($ Father \bullet Mother $){ }_{6}\left(=(\right.$ Father \bullet Mother $\left.){ }_{7}=\ldots\right)$								
Level	Descendant	Ancestor	1	5	240	3	26	241
1	36	35	1	42	44	3	23	71
1	33	35	1	71	57	3	23	44
1	23	35	1	75	73	3	42	46
1	35	19	2	36	19	4	36	5
1	15	42	2	33	19	4	33	5
1	19	26	2	23	19	4	23	5
1	26	22	2	35	26	4	35	241
1	22	5	2	15	71	4	15	46
1	5	241	2	19	22	4	23	75
1	241		2	26	5	4	33	57
1	240	239	2	22	241	5	36	241
1	239		2	42	75	5	33	241
1	42	71	2	71	218	5	23	241
1	71	75	2	75	46	5	23	218
1	75	218	2	23	42	5	23	73
1	218	46	2	5	239	5	36	240
1	46		2	42	218	5	33	240
1	36	493	2	71	46	5	23	240
1	33	485	3	36	26	6	36	239
1	23	15	3	33	26	6	33	239
1	35	255	3	23	26	6	23	239
1	19	248	3	35	22	6	23	46
1	26	58	3	15	75			
1	22	243	3	19	5			

Figure 18 (Father • Mother)*'s fixpoint for RULERS instance in Figure 1

2.2.2. The absolute need for deleting duplicates in each step of the computation

Formalizing genealogical trees, both Father and Mother graphs are acyclic. However, the graph of their product may contain cycles (i.e. generally, the union of tree-type graphs is no more tree-like, but a lattice-type graph).

Especially in royal houses, it is frequently the case that somebody is a descendant of a same person several times, on several branches of his/her family. For example, to keep it simple, let us recall that the famous pharaoh Akhenaten (founder of the monotheism), son of Amenhotep III and Tiye, married one of his sisters (which was common not only in ancient Egypt). Consequently, their famous son Tutankhamun was twice descending from both his grandparents.

If not deleted in the algorithm above, such duplicates (on a same level) are only polluting the final answer with more and more duplicates (on each lower levels).

There may be, however, such duplicates on different levels; for example, let x be a father of y and z, w a descendant of y, and v a child of w and z : then, v is a descendant of x twice, once as his grandfather (through z) and once as his grandgrandfather (through y and w). This means that, on a level l, the above algorithm adds to the result a pair $\langle v, x\rangle$ and then, on level $l+1$, would add it once more.

Consequently, the above algorithm would never stop were such duplicates not deleted.

2.2.3. Computing transitive closures for self-function products of any arity

In fact, MatBase is able to compute transitive closures for any $f_{1} \bullet \ldots \bullet f_{n}: R \rightarrow R^{n}$ product (n being a strictly positive natural), as $\left(f_{1} \bullet \ldots \bullet f_{n}\right)^{*}=\left(G_{f 1} \cup \ldots \cup G_{f n}\right)^{*}$. Figure 19 presents this generalized algorithm, also based on the associativity

Algorithm computeProductTransClosure

Input: id F of an integer function product $f_{1} \bullet \ldots \bullet f_{n}, n>0$, whose graph is stored by a table R having an integer column as its surrogate primary key;

TransClosure, a_{1}, a_{2} - the names of the desired table (distinct in the db) and its two columns for storing the result;
nulls? - a pair of the type <0 or 1 or 2,0 or 1 or $2>$, where the first element is describing user request for nulls processing for f, while the second one is for g (using same code conventions as in Figure 13);

Output: table TransClosure instance, storing the transitive closure of $F=f_{1} \bullet \ldots \bullet f_{n}$;
Strategy:
if F does not correspond to a function then return error ("wrong input parameter: there is no function having this id!"); $n=\operatorname{arity}(F)$;
loop for $i=1, n, 1$
if codomain $(F[i]) \not \subset$ INT then return error ("impossible to compute transitive closure: i-th F's member data type is not an integer one!");
end loop; if existsTable(TransClosure) then execute("DELETE FROM " \& TransClosure) else execute("CREATE TABLE " \& TransClosure \& "([Level] INT, [" \& a a_{1} "] INT, [" \& a a_{2} \& "] INT) ;");
oldcard $=0 ; \quad$ // TransClosure is empty if codomain $\left(f_{1}\right)=R$ or $n=1$ then $x=\operatorname{primaryKeyName~}(R)$;
else begin $n=n-1 ; x=F[1]$;
loop for $i=1, n, 1$

$$
F[i]=F[i+1] ;
$$

end loop;
end;
loop for $i=1, n, 1$
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& x \& "], [" \& F[i] \& "] FROM " \& R \& iif(nulls? [i] = 0, " WHERE [" \& F[i] \& "] NOT IS NULL", "")); // initialize result with $<x, f_{i}(x)>$ pairs
end loop;
level $=2$;
// next step will add second level "ancestors"

Figure 19 MatBase algorithm for computing function products (of any arity) transitive closures

```
card = execute("SELECT Count (*) FROM " \& TransClosure);
while card \(=\) oldcard
    oldcard \(=\) card; \(\quad / /\) prevent infinite looping
    loop for \(i=1, n, 1\)
        execute("INSERT INTO " \& TransClosure \& " SELECT " \& level \& " AS [Level], " \& TransClosure \& ".[" \& \(a_{1}\) \& "], " \& R \&
            ".[" \& F[i] \& "] FROM " \& R \& " INNER JOIN " \& TransClosure \& " ON "\& TransClosure \& ".[" \& \(a_{2}\) \& "]=" \& R \& ".["
            \& \(x\) \& "] WHERE [Level] =" \& level - 1 \& iff (nulls? [i] =1, " AND " \& R \& ".[" \& F[i] \& "] NOT IS NULL", ""));
```

 end loop;
 execute("DELETE FROM " \& TransClosure \& " WHERE x IN (SELECT y FROM (SELECT Min(Descendant),
 Min(Ancestor), Count(Descendant) AS Number Of Dups, Max(x) AS y FROM " \& TransClosure \& " GROUP BY
 Descendant, Ancestor HAVING Count(Descendant)>1);")
 card = execute("SELECT Count (*) FROM " \& TransClosure);
 level \(=\) level +1 ; // prepare next level "ancestors"
 end while;
End Algorithm computeProductTransClosure;

Figure 19 (Continued)
of the union operator. Note that, as MatBase does not allow definition of function products having different domains, there is no need for checking that anymore.

Corresponding extended Datalog \neg and RA counterparts are trivially obtainable for any $n>2$.

Theorem 2: Algorithm computeProductTransClosure from Figure 19 has the following four properties:
(i) its complexity is $O\left(n^{*}\right.$ level), where n is the arity of the input function product (i.e. the number of its member functions) and level is the maximum of all lengths of the corresponding n digraphs
(ii) it is sound (i.e. it is not generating anything else but elements of the transitive closure of the input function product)
(iii) it is complete (i.e. it generates all elements of the transitive closure of the input function product)
(iv) it is optimal (i.e. it computes the transitive closure of the input function product in the least number of steps possible)

Proof (very similar to the one of Theorem 1 above):
(i) Trivial, as it has only three finite loops (hence, as it is also deleting any duplicates in each iteration, it never loops infinitely): the first two of them depending on the finite input function product arity n, and the last one depending on the maximum longest path (level - 2 at the end of the loop execution, as the final iteration does not add any new elements to the result, thus corresponding to the second fixpoint, and as one more execution of the last statement of the loop takes place before discovering that the while condition has become true) in the digraphs of the input function members (trivially, as db instances are finite, any such length is finite), and also on the inner fourth loop, which is executed in each iteration of the third one for n times (and even if some such executions would not add any new elements to the result, so no disk writes are necessary, only read ones are).
(ii) Obviously, the second loop only adds the n input function members digraphs; then, in each iteration of the third loop, for any pair $\langle x, y\rangle$ in the current result approximation and $\langle y, z\rangle$ in the current corresponding i-th function member digraph, it is only added the pair $\langle x, z\rangle$, according to the transitivity rule.
(iii) Obviously, the second and the fourth (i.e. the inner to the third one) loops are executed for each member function of the input function product, while the third one is executed up until no further transitively computable pairs may be added to the result: the first statement of this loop makes sure that variable oldcard is storing the current result cardinal, the last but one is updating variable card's value to the cardinal of the result after adding current iteration elements, and the while statement condition ensures that the process repeats only as long as these two values are not equal (i.e. as long as the previous iteration was adding at least one new element to the result).
(iv) Obviously, as soon as the previous third loop iteration did not add any new elements to the result, the process stops (i.e. the algorithm only computes the first two fixpoints, which is the minimum possible in order to discover the least fixpoint). Moreover, the algorithm never generates duplicates on a same level (as it joins to the input relation only the current result elements that were added in the previous iteration of the third loop), which is minimizing disk accesses for both reading and writing operations.
q.e.d.

Corresponding extensions of Propositions 1 and 2 above for n functions $(n>2)$ are trivial and their proofs obvious.
MatBase users may call this method also for computing transitive closures of homogeneous relations (i.e. over a same set) of no matter what arity, by considering its canonical Cartesian projections as the members of a function product (defining its scheme) of the type $F=f_{1} \bullet \ldots \bullet f_{n}: R \rightarrow S^{n}$ product (n being a strictly positive natural and $S \neq R$).

In fact, trivially, MatBase is able to compute transitive closures for any integer function product $f_{1} \bullet \ldots \bullet f_{n}: R \rightarrow \operatorname{INT}^{n}(n$ being a strictly positive natural), as $\left(f_{1} \bullet \ldots \bullet f_{n}\right)^{*}=\left(G_{f 1} \cup \ldots \smile G_{f n}\right)^{*}$.

3. Computing dyadic relation and function product closures for their domain elements

As seen in Figures 3 and 4 above, a simpler (and faster) way to compute somebody's ascendance is by using Datalog programs instantiations. For example, given any relation $S \subseteq R \times R$ and any given $x \in R$, we define x^{\prime} s transitive closure $x^{*}=\left.S^{*}\right|_{x}=\left\{y \in R \mid\left\langle x, y>\in S^{*}\right\}\right.$; in particular, given any self-function $f: R \rightarrow R$ (having graph $G_{f}=\{\langle x, f(x)\rangle \mid x \in R\}$) and any given $x \in R, x^{*}=\left.G_{f}{ }^{*}\right|_{x}=\left\{y \in R|<x, y\rangle \in G_{f}^{*}\right\}$. Trivially, given another (not necessarily distinct) $g: R \rightarrow R$ (having graph $\left.G_{g}=\{<x, g(x)>\mid x \in R\}\right)$, corresponding x^{\prime} s transitive closure for the function product $(f \bullet g)^{*}=\left(G_{f} \cup G_{g}\right)^{*}$ is $x^{*}=\left(G_{f} \cup\right.$ $\left.G_{g}\right)\left.^{*}\right|_{x}=\left\{y \in R \mid\langle x, y\rangle \in\left(G_{f} \cup G_{g}\right)^{*}\right\}$.

Obviously, by translating, for example, the program instantiation from Figure 2 above into RA, the following equation is obtained (see also Figure 7):

$$
\begin{gathered}
36^{*}=\rho_{\text {Ancestor } \leftarrow \text { Father }}\left(\pi_{\text {Father }}\left(\sigma_{x}=36(\text { RULERS })\right)\right) \cup \\
\rho_{\text {Ancestor } \leftarrow \text { Father }}\left(\pi_{\text {Father }}\left(36^{*} \bowtie_{\text {Ancestor }=x} \pi_{x}, \text { Father }\left(\sigma_{x}=36((\text { RULERS }))\right)\right)\right.
\end{gathered}
$$

Figure 20 Recursive RA equation corresponding to the instantiation in Figure 2

Figure 21 presents MatBase's algorithm for computing such instantiation closures.

Algorithm computeDyadicRelInstantiationTransClosure

Input: c_{1}, c_{2} - the two columns of a table R storing the desired relation graph;
TransClosure, a_{1}, a_{2} - the names of the desired table (distinct in the db) and its two columns for storing the result;

Figure 21 MatBase algorithm for computing transitive closures of dyadic relations' elements
nulls? - 0 , if no null values are desired in c_{2}, or
1, if no null values are desired in c_{2} except for those in R (which is the default value), or
2 , if all null values are desired in c_{2};
x - The value of the surrogate key of R for which the closure is computed;
Output: table TransClosure instance, storing the corresponding transitive closure;

Strategy:

if domain $\left(c_{1}\right) \neq \operatorname{domain}\left(c_{2}\right)$ or codomain $\left(c_{1}\right) \neq$ INT or codomain $\left(c_{2}\right) \neq$ INT then
return error ("impossible to compute transitive closure: c_{1} and c_{2} are either not columns of a same table or have incompatible data types!");
if existsTable(TransClosure) then execute("DELETE FROM " \& TransClosure)
else execute("CREATE TABLE " \& TransClosure \& "([Level] INT, [" \& $\left.a_{1} \& "\right]$ INT, [" \& a a_{2} "] INT) ;");
oldcard $=0 ; \quad / /$ TransClosure is empty
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& $c_{1} \&$ "], [" \& $c_{2} \&$ "] FROM " \& R \& iif(nulls? = 0, WHERE [" \& c_{2} \& "] NOT IS NULL", "")); // initialize result with <"son", "father"> pairs
level $=2$; // next step will add second level "ancestors"
card = execute("SELECT Count (*) FROM " \& TransClosure);
while card $=$ oldcard
oldcard = card; // prevent infinite looping
execute("INSERT INTO " \& TransClosure \& " SELECT " \& level \& " AS [Level], " \& TransClosure \& ".[" \& a \& "], " \& R \& ".[" \& $\left.c_{2} \& "\right]$ FROM " \& R \& " INNER JOIN " \& TransClosure \& " ON "\& TransClosure \& ".[" \& $\left.a_{2} \& "\right]=" \& R \& " .[" \&$ $\left.c_{1} \& "\right]$ WHERE [Level] =" \& level - 1 \& " AND x = " \& x \& iff (nulls? =1, " AND " \& R \& ".[" \& $\left.c_{2} \&{ }^{\prime}\right]$ NOT IS NULL" ""));
card = execute("SELECT Count (*) FROM " \& TransClosure);
level $=$ level $+1 ; \quad$ // prepare next level "ancestors"
end while;
End Algorithm computeDyadicRelInstantiationTransClosure;

Figure 21 MatBase (Continued)

Similarly, Figure 22 presents MatBase's algorithm for computing instantiation closures for function products of any arity:

Algorithm computeFunctProductInstantiationTransClosure

Input: id F of an integer function product $f_{1} \bullet \ldots \bullet f_{n}, n>0$, whose graph is stored by a table R having an integer column as its surrogate primary key;

TransClosure, a_{1}, a_{2} - the names of the desired table (distinct in the db) and its two columns for storing the result; nulls? - a pair of the type <0 or 1 or 2,0 or 1 or $2>$, where the first element is describing user request for nulls processing for f, while the second one is for g (using same code conventions as in Figure 13);
x - The value of the surrogate key of R for which the closure is computed;
Output: table TransClosure instance, storing the transitive closure of $F=f_{1} \bullet \ldots \bullet f_{n}$ for x;
Strategy:
if F does not correspond to a function then return error ("wrong input parameter: there is no function having this id!");
$n=\operatorname{arity}(F)$;
loop for $i=1, n, 1$
if codomain $(F[i]) \not \subset$ INT then return error ("impossible to compute transitive closure: i-th F's member data type is not an integer one!");
end loop;
if existsTable(TransClosure) then execute("DELETE FROM " \& TransClosure)
else execute("CREATE TABLE " \& TransClosure \& "([Level] INT, [" \& a a_{1} "] INT, [" \& a a_{2} \& "] INT) ;");
oldcard $=0 ; \quad$ // TransClosure is empty
if codomain $\left(f_{1}\right)=R$ or $n=1$ then $x=\operatorname{primaryKeyName}(R)$;
else begin $n=n-1 ; x=F[1]$;
loop for $i=1, n, 1$
$F[i]=F[i+1] ;$
end loop;
end;
loop for $i=1, n, 1$
execute("INSERT INTO " \& TransClosure \& " SELECT 1 AS [Level], [" \& x \& "], [" \& F[i] \& "] FROM " \& R \& " WHERE x =" \& x \& iif(nulls? $[i]=0$, " AND [" \& F[i] \& "] NOT IS NULL", "")); // initialize result with <x, $f_{i}(x)>$ pairs
end loop;
Figure 22. MatBase algorithm for computing transitive closures of function products' elements

```
level = 2; // next step will add second level "ancestors"
card = execute("SELECT Count (*) FROM " & TransClosure);
while card # oldcard
    oldcard = card; // prevent infinite looping
    loop for i=1,n,1
        execute("INSERT INTO " & TransClosure & " SELECT " & level & " AS [Level], " & TransClosure & ".[" & a | & "], " & R & 
        ".[" & F[i] & "] FROM " & R & " INNER JOIN " & TransClosure & " ON "& TransClosure & ".[" & a & "]=" & R & ".["
        & x & "] WHERE [Level] =" & level - 1 & " AND x =" & x & iff (nulls?[i] =1, " AND " & R & ".[" & F[i] & "] NOT IS
        NULL",""));
    end loop;
    execute("DELETE FROM " & TransClosure & " WHERE x IN (SELECT y FROM (SELECT Min(Descendant),
        Min(Ancestor), Count(Descendant) AS Number Of Dups, Max(x) AS y FROM " & TransClosure & " GROUP BY
        Descendant, Ancestor HAVING Count(Descendant)>1);")
    card = execute("SELECT Count (*) FROM " & TransClosure);
    level = level + 1; // prepare next level "ancestors"
end while;
End Algorithm computeFunctProductInstantiationTransClosure;
```

Figure 22 (Continued)
These two latter algorithms also enjoy the same four properties as those from Figures 13 and 19, respectively (i.e their complexities are O (longest digraph path for element x) and $O\left(n^{*}\right.$ level $_{x}$), respectively, and they are sound, complete, and optimal). The corresponding proofs are left to the reader, as they are slight simplifications of those of the two Theorems above.

4. Conclusion

The main contribution of this paper is not only presenting how should be theoretically computed transitive closures for both function products of the type $f_{1} \bullet \ldots \bullet f_{n}: R \rightarrow S^{n}$ (by computing the transitive closure of the union of their members' graphs) and for their domain elements, but also introducing the elegant way in which MatBase, a prototype intelligent db and kb management system developed by the author, is actually computing them, both in Datalog \neg, RA, and a pseudo-code embedding SQL.

Moreover, it is proved that MatBase algorithms for computing transitive closures (both for n-ary homogeneous relations and function products, as well as for their instance elements) are linear, solid, complete, and optimal. In the sequel, it is also proved that the union of the transitive closures of the members of any function product is always included in the transitive closure of their product, but the reverse is not true: generally, the transitive closure of a function product is richer than the union of its members' transitive closures.

Note that no commercially available, nor prototype system (except for MatBase) is offering to their users the possibility to compute transitive closures for function products and that this facility is crucial in order to be able to correctly answer such questions as the ones of this paper about HRH Prince Charles of Wales, without first designing and running costly preliminary queries.

Anecdotically, examples also show that HRH Prince Charles of Wales, who has among his maternal ancestors Vlad Călugărul, a stepbrother of Vlad „Dracula" „the Impaler", is descending from Wallachia's founder, Basarab I (of Cuman origin by his father), but not from Moldavia's one, Bogdan I, although most of „Dracula"'s stepbrothers and sisters are also, by their mother, descending from Bogdan I.

Abbreviations

- db - Database
- kb - Knowledge base
- EMDM - (Elementary) Mathematical Data Model
- E-RDM - Entity-Relationship Data Model
- RDM - Relational Data Model
- RDBMS - Relational Data Base Management System;
- i.e. - that is
- RA - Relational algebra;
- q.e.d. - what was to be proved;
- card - cardinal
- DKNF - Domain Key Normal Form
- HRH - His Royal Highness

Compliance with ethical standards

Acknowledgments

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Disclosure of conflict of interest

The author has no relevant financial or non-financial interests to disclose.

References

[1] Warshall S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11-12.
[2] Ullman JD. (1985). Implementation of Logical Query Languages for Databases. ACM Trans. On Database Systems, 10(3), 289-321.
[3] Mancas C. (2022, in press). Conceptual Data Modeling and Database Design: A Completely Algorithmic Approach. Volume II: Refinements for an Expert Path. Apple Academic Press / CRC Press (Taylor \& Francis Group), Waretown, NJ.
[4] Djuvara N. (2011). Thocomerius - Negru Vodă a Ruling Prince of Cuman Origins at the beginnings of Wallachia, Second edition (in Romanian). Humanitas Publishing House, Bucharest, Romania.
[5] Agrawal R and Jagadish HV. (1987). Direct algorithms for computing the transitive closure of database relations. In Stocker PM, Kent V and Hammerslay P (Eds.), Proc. 13th Int. Conf. Very Large Data Bases, Brighton, England, 255-266.
[6] Beletska A, Barthou D, Bielecki W and Cohen A. (2009). Computing the Transitive Closure of a Union of Affine Integer Tuple Relations. Lecture Notes in Computer Science 5573, Springer Verlag, Berlin, Germany, 98-109.
[7] Bozga M, Iosif R and Konecný F. (2011). Transitive Closures of Ultimately Periodic Relations. Techn. Report TR-2011-14, VERIMAG, CNRS, Gieres, France.
[8] Demetrescu C and Italiano GF. (2000). Fully dynamic transitive closure: Breaking through the O(n2) barrier. In Proc. of the 41st IEEE Annual Symposium on Foundations of Computer Science (FOCS'00), 381-389.
[9] Kelly W, Pugh W, Rosser E and Shpeisman T. (1994). Transitive closure of infinite graphs and its applications. Techn. Report CS-TR-3457, University of Maryland at College Park, MD.
[10] King V. (1999). Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS'99), 81-99.
[11] Meyer H De, Naessens H and Baets B De. (2004). Algorithms for computing the min-transitive closure and associated partition tree of a symmetric fuzzy relation. European Journal of Operational Research, 155(1), 226238.
[12] Pang C, Dong G and Ramamohanarao K. (2005). Incremental Maintenance of Shortest Distance and Transitive Closure in First-Order Logic and SQL. ACM Transactions on Database Systems, 30(3), 698-721.
[13] Przymusinski T. (1989). Every logic program has a natural stratification and an iterated least fixed point model. In Proc. 8th ACM Symp. on Principles of Database Syst. (PODS), 11-21.
[14] Sternagel C and Thiemann R. (2011). Executable Transitive Closures of Finite Relations. Archive of Formal Proofs Online Journal, https://isa-afp.org/entries/Transitive-Closure.html.
[15] Chimenti D, Gamboa R, Krishnamurti R, Naqvi S, Tsur S and Zaniolo C. (1990). The LDL System Prototype. IEEE Trans. on Knowledge and Data Eng., 2(1), 76-90.
[16] Mancas C and Dragomir S. (2004). MatBase Datalog? subsystem meta-catalog conceptual design. In Hamza M (Ed.), Proc. IASTED Conf. on Software Engineering and Applications, Cambridge, MA, ACTA Press, Calgary, Canada, 34-41.
[17] Mancas C. (2002). On Knowledge Representation using an Elementary Mathematical Data Model. In Hamza M (Ed.), Proc. of IASTED Intl. Conf. on Information and Knowledge Sharing, St. Thomas, U.S. Virgin Islands, ACTA Press, Calgary, Canada, 206-211.
[18] Chen PP. (1976). The Entity-Relationship Model: Toward a Unified View of Data. ACM Trans. on Database Syst., 1(1), 9-36.
[19] Mancas C. (2015). Conceptual Data Modeling and Database Design: A Completely Algorithmic Approach. Volume I: The Shortest Advisable Path. Apple Academic Press / CRC Press (Taylor \& Francis Group), Waretown, NJ.
[20] Abiteboul S, Hull R and Vianu V. (1995). Foundations of Databases. Addison-Wesley Publishing Co., Boston, MA.
[21] Codd EF. (1970). A Relational Model for Large Shared Data Banks. Comm. of the ACM, 13(6), 377-387.
[22] Ceri S, Gottlob G and Tanca L. (1989). What You Always Wanted to Know About Datalog (And Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, 1(1), 146-166.

[^0]: * Corresponding author: Christian Mancas

 Mathematics and Computer Science Department, Ovidius University, Constanta, Romania.

